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We report measurements of the density of a vibrated granular material as a function of time. The ma-
terial studied consists of monodisperse spherical glass particles confined to a long, thin cylindrical tube.
Vibrations cause the pile to evolve from a low density initial configuration toward a steady state with a
final density that depends on the intensity of the vibrations. We find a complex time evolution that is in-
compatible with a single exponential relaxation. There appears to be a characteristic value of the ac-
celeration that separates two regimes of packing behavior. The results are compared to current theories

of compaction.

PACS number(s): 05.40.+j, 46.10.+z, 81.20.Ev, 81.35.+k

The manner in which a disordered system progresses
from an initial perturbed configuration toward its equilib-
rium state can often be a slow and complicated process
with a number of different relaxation mechanisms
proceeding in parallel. Practically all work studying such
relaxation phenomena has focused on thermal systems in
which the concepts of temperature and equilibrium are
well defined. Comparatively little is known about relaxa-
tion in nonthermal disordered systems. A simple proto-
type of such systems is a box filled with a granular ma-
terial such as sand or ball bearings where the material in-
side the box can be assembled in many ways [1]. Indeed,
for the case of spherical particles, one can vary the pack-
ing fraction from p=0.55 for the mechanically least
stable configurations to p=0.64 for the densest, random
close packing limit [2]. The gravitational energy neces-
sary to lift a single grain of sand by one diameter exceeds
any thermal energy available at room temperature by at
least 12 orders of magnitude, so that temperature-
induced fluctuations offer no means of moving between
the many metastable states available to the particles. As
a result, the granular system can evolve along a sequence
of metastable configurations only in the presence of exter-
nally applied, nonthermal excitations produced, for ex-
ample, by shaking or vibrating the container. We address
the question of how such a system approaches its op-
timally packed state for a given vibration intensity.

Despite the fundamental importance of compaction -

and settling to many industrial processes using granular
materials, experimental work to characterize this evolu-
tion in vibrated granular media is sparse and inconclusive
[3,4]. On the theoretical side there have been efforts [5]
to use concepts from statistical mechanics in the descrip-
tion of granular media, but only recently has there been
an attempt, by Edwards and co-workers, to formulate a
“thermodynamics of powders” [6]. In order to realize
such a theory, it is necessary to know the phenomenology
of how powders compact under a variety of experimental
conditions.

In this paper, we present a systematic experimental in-
vestigation of the evolution of density with time in a vi-
brated granular material. We use a noninvasive, capaci-
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tive technique to measure the density of a simple model
system in which the constituent particles are mono-
disperse spheres. We focus on the relaxation occurring
when the system is prepared in a low density state and
then vibrated to induce decay toward the steady state
density [7]. The data indicate a characteristic, nonex-
ponential relaxation process that depends on both the
strength of the vibration, parametrized by the accelera-
tion, and the depth from the surface into the pile. We ex-
pect that the understanding obtained from this simple
model system may be generically applicable to more com-
plicated granular materials.

Monodisperse, 2 mm diameter spherical soda-lime
glass beads were confined to a 1.88 cm diameter Pyrex
tube mounted vertically on a Briiel and Kjaer 4808 vibra-
tion exciter. A schematic diagram of the apparatus is
shown in Fig. 1(a). Since water vapor in the tube can in-
troduce cohesion between the beads and change their
frictional properties as well as the dielectric response of
the bead pack, the beads were baked prior to loading in
the tube and maintained under vacuum to isolate the sys-
tem from external humidity fluctuations. The tube was 1
m in length and constrained to vertical motion by two
Teflon linear motion guides. In order to minimize elec-
trostatic attraction between the beads and the tube walls,
the inner surface of the tube was periodically treated with
an antistatic solution. The beads were prepared in a low
density initial state by flowing high pressure, dry nitrogen
gas through the tube from the bottom. The initial height
of the beads before tapping was 87 cm, corresponding to
an initial column packing fraction of 0.5771+0.005. This
is not the loosest packing that could be achieved, but
proved to be an easily reproducible value so that repeated
measurements starting from the same initial conditions
could be made. The smooth tube walls and the low static
friction combined to prevent convection [8]. We verified
that no convection occurred by using dyed tracer beads
to visualize any large scale flow.

The vibration and measurement portions of the ap-
paratus were computer controlled to facilitate runs of
long duration. The output signal from a computer-
triggered function generator, consisting of one complete
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cycle of a 30 Hz sine wave, was amplified and fed to the
electromagnetic vibration exciter, producing a single
shake, or “tap.” The intensity of these taps was moni-
tored with an accelerometer. The acceleration profile of
a representative tap is shown in the inset of Fig. 1(a).
We parametrized the vibration intensity by I', the ratio of
a, the peak acceleration of a tap [9], to g =9.81 m/s2, the
gravitational acceleration (I'=a /g). The use of individu-
al, well separated taps avoided problems with internal
resonances that are likely to occur during continuous

allowed sufficient time between excitations so that all
motion in the column from one tap ceased before the next
tap started; the measurements described here were there-
fore not affected by any motion caused by one tap intrud-
ing into the interval of the next tap.

The column density was measured with four parallel
plate capacitors composed of copper tape strips mounted
along the outside of the tube. Since the capacitance of a
capacitor depends on the dielectric constant of the ma-
terial between its plates, this device is ideal for measuring

driving of a long tube. Furthermore, using discrete taps the density of the material inside the tube in a nonin-
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FIG. 1. (a) A schematic drawing of the apparatus showing the cylindrical container and the four measuring capacitors. Two refer-
ence capacitors are used to correct for long term drifts of the system. The inset shows the acceleration induced by a tap of ' =2.7.
This profile was obtained with an accelerometer mounted on the stage of the vibration exciter and is an average of 64 pulses. (b) The
packing fraction p from capacitor 4 (near the bottom of the tube) as a function of the logarithm of the tap number ¢ for I'=1.4 (X),
1.8 (0), 2.3 (A), 2.7 (O, 3.1 (V), 4.5 (0), and 5.4 (+). The tap number is offset by one tap so that the origin is included in the figure.
This convention is followed in all the figures. Each curve is an average of 4 to 5 separate experimental runs and the error bars
represent the rms variations between runs. We emphasize that this variation is illustrative of the range of packing profiles exhibited
at any I', and not of fluctuations within individual runs. The solid lines are least square fits to the heuristic form, Eq. (3), explained in
the text. The inset shows a subset of the data on a linear scale. (c) The packing fraction obtained from capacitor 2 near the top of the
tube. The data for I'=1.4 (X), 1.8 (0), 2.3 (A), and 2.7 (O) are shown in the main figure and the data for I'=2.7 (0), 3.1 (V), 4.5 (O),
and 5.4 (+) are shown in the inset. As in Fig. 1(b), the solid lines are fits to Eq. (3).
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vasive manner. Capacitor 1 had plates 30 cm in length
and 1.2 cm in width, and its center was positioned 80 cm
above the bottom of the tube such that the top surface of
the bead pack remained between the two plates
throughout the compaction process. It was calibrated
with optical measurements of the total column height
during every run, and was employed only to track the
column height. The plates of capacitors 2, 3, and 4,
mounted below capacitor 1 with their centers 50, 30, and
10 cm from the bottom of the tube, were each 15 cm long
and 1.2 cm wide. Each of these capacitors covered about
17% of the system, and averaged the density over sec-
tions containing approximately 6000 beads. In separate
measurements, we verified that the capacitance varied
linearly with packing fraction for each capacitor.

An LCR meter was used to measure the capacitances
of all the capacitors between taps. The capacitances of
two reference capacitors were also measured simultane-
ously to correct for temperature fluctuations and short
term (within a single run) drift in the measurement elec-
tronics. These capacitors were mounted on a stationary
Pyrex tube identical to the vibrated one [see Fig. 1(a)].
One of the reference capacitors was filled with 2 mm glass
beads while the other remained empty. Both tubes were
maintained under the same vacuum. With these arrange-
ments, the resolution of our measurement was 1 fF, and
the conversion factor between capacitance and packing
fraction for capacitors 2, 3, and 4 was measured to be
(6.0+£0.3)X 10 *fF~!. We used the average column den-
sity, obtained directly by optical measurements of the ini-
tial total column height, as the initial density p, for each
of the buried capacitors. Fluctuations in the absolute
values for the initial packing fractions were on the order
of 0.005 from run to run.

Figure 1(b) shows the packing fraction p near the bot-
tom of the tube (capacitor 4) as a function of tap number
t for I' between 1.4 and 5.4. Each curve is an average of
5 separate runs and the error bars (shown only for a few
points) represent the rms variations between individual
runs. These variations do not, however, reflect fluctua-
tions within individual curves of the ensemble, which are
typically smooth within the resolution of the capacitors
and have the same characteristic shape as the average
curve shown in the figure. The tap number is plotted on
a logarithmic scale so that four decades of ¢ can be easily
viewed. The tap number ¢ is offset by 1 tap so that the
origin is included on the logarithmic axis. This conven-
tion is followed throughout the paper. For comparison,
the inset shows a subset of the data on a linear scale.
Plotted in this way over the full range of ¢, however, most
of the complex behavior apparent in Fig. 1(b) is ob-
scured. At the lowest acceleration in Fig. 1(b), ' =1.4,
significant relaxation was clearly observed, but only after
tapping for a long time. At I'=1.8, the behavior
changed radically; the density began to increase immedi-
ately and continued until =200, at which time the den-
sity variation slowed down dramatically. (We note that
in individual runs out to ¢#=100000, slow density
changes similar to that for I'=1.4 can continue at all ac-
celerations.) The I"'=2.3 data show no sign of saturation
even out to t=10000. At I'=2.7 and above, all the

curves appear to lie on a common curve. At the highest
acceleration, I'=5.4, fluctuations about this average
curve begin to be seen. At time scales longer than
recorded for these measurements, it is conceivable that
these curves no longer continue to superimpose on top of
one another.

The density relaxation near the top of the tube, mea-
sured with capacitor 2, is shown in Fig. 1(c). The sharp
transition in packing behavior between I'=1.4 and
I"'=1.8 observed at the bottom of the tube [Fig. 1(b)] per-
sists, but the differences between the I'=1.8 and '=2.3
data are now smaller. Again, the higher acceleration
runs collapse to a single curve within the statistical
spread, but the curves for I' = 3.1 are noisier than those
of capacitor 4 near the bottom of the tube. This reflects
the onset of significant fluctuations in the individual runs
contributing to the ensemble average. It is evident from
Fig. 1 that no steady state has been attained at the
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FIG. 2. (a) The dependence of the packing fraction for
I'=1.8 obtained from the capacitor 2 (O), capacitor 3 (X), and
capacitor 4 (A). The inset shows the column density for ©'=1.8
determined from a weighted averaged of the data from the three
lowest capacitors (O) compared with an independent measure-
ment of the average density determined by the height of the
grains in the column (O). (b) The same data as Fig. 2(a) for
r=2.17.
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higher accelerations up to ¢ =10 000.

The depth dependence of the packing fraction is shown
in more detail for I'=1.8 in Fig. 2(a). Clearly, the net
density change decreases as the depth increases. The sep-
aration between the packing curves for capacitors at in-
creasing depth is very similar to that seen in Fig. 1(b) for
decreasing acceleration. At higher accelerations the
column packs more homogeneously [shown in Fig. 2(b)
for T=2.7] and at the same rate for all the capacitors
within the statistical uncertainty. Previous measure-
ments of depth dependence in granular compaction em-
ployed invasive measurement techniques, which limited
data resolution, and failed to control for convection and
size segregation. Nevertheless, there is some general
agreement between their results and ours in that the den-
sity change is higher near the top of the system [4,10].

As a check on the reliability of absolute density values
obtained from our measurements, we have calculated the
average column density using the calibrated measure-
ments of capacitors 2, 3, and 4. (The density observed in
capacitor 2 was extrapolated to the top of the column.)
The inset of Fig. 2(a) shows a comparison for I'=1.8 of
this average column density with independent measure-
ments of the column density obtained from optical mea-
surements of the column height. The agreement is well
within error. The inset of Fig. 2(b) contains the same
comparison for I'=2.7.

The nature of the transition in packing behavior
around I'=1.8 is clarified by plotting the change in pack-
ing fraction after 10000 taps, Ap(t=10000)
=p(t=10000)—p,, against acceleration I'. This is
shown in Fig. 3 for both the overall column density and
the density at the bottom of the tube measured by capaci-
tor 4. A rapid increase in the average column density
occurs at a characteristic acceleration I'.=~1.8. The
value of this characteristic acceleration near the bottom
of the tube, measured by capacitor 4, is slightly higher.
(Much of the previous experimental work in granular
compaction concentrated on establishing profiles of this
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FIG. 3. Ap(#=10000), the change in packing fraction after
10000 taps, is plotted against acceleration I'. Both the overall
column density (X), determined by the height of the grains in
the column, and the density determined from capacitor 4 (A)
are shown.
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type [4,10-12], albeit under less controlled experimental
conditions and with far less data density. Reported
values for I', generally lie between I'=1.0,2.0. We have
found that the precise value of I, is sensitive to changes
in the frictional interaction between the beads and be-
tween the beads and the container wall.) Above I'=2.7,
Ap(t=10000) levels off in both curves shown in Fig. 3.
However, our experiment probed only the regime of low
shaking intensity where gravity and internal friction are
significant forces and convective motion can be con-
trolled. At higher accelerations, I' >>T",, defect creation
competes with defect “annealing” during each tap, and
we expect Ap(z=10000) to decrease upon further ac-
celeration increase [4,12,13].

Although there have been many simulations of granu-
lar convection and size segregation [14,15], there have
been only a few attempts at simulating granular compac-
tion. Barker and Mehta [15-17] have employed a nonse-
quential, random close packing algorithm that permits
the formation of arches and other complex structures to
model the relaxation of a tapped, three dimensional pack
composed of frictionless, monodisperse spheres. Their
results were obtained for the regime I' >>T",, and exhibit
a steady decrease in Ap with increasing tap intensity.
This is the opposite trend to what we have observed,
which we attribute to the simulations being performed at
much larger accelerations than our experiments. Never-
theless, for any chosen shaking intensity, these simula-
tions produce time evolutions p(¢) that exhibit slow relax-
ation behavior and are qualitatively very similar to our
data.

The traces in Fig. 1(b) clearly indicate that a simple ex-
ponential relaxation arising from a single characteristic
decay time does not describe granular compaction.
There are many possibilities for metastable bead
configurations to evolve under tapping, suggesting that
several, and possibly a whole range of, time constants
may be more appropriate. Barker and Mehta have re-
cently proposed [17] a model in which beads can relax
both independently, as individual particles, and collec-
tively, as clusters. Their model, with time scales 7,4 for
single-bead relaxation and 7 for cluster relaxation, leads
to a sum of two exponential terms, so that

p(1)=p s — Apisqexp —ApeoeXp Y

ind col

where p, is the final steady state density and Ap;4 and
Ap..; are the amplitudes of the two relaxation processes.
Figure 4(a) shows the best fits of p(¢) from Eq. (1) to
several relaxation curves representative of the range of
our observed packing behavior. Although the resulting
fits lie well within experimental spread from run to run,
they exhibit additional structure not contained in the en-
semble averages. Furthermore, the large number of
fitting parameters (5) and the systematic deviations in
curvature apparent for I' 2 2.3 render the agreement in-
conclusive.

Stretched exponential fits have been commonly applied
to relaxation processes in disordered thermal systems [18]
and are characteristic of a continuous range of time con-
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stants. We find that the form
t+t,

T

p(t)=p,—Ap exp ()

fits our data reasonably well where we have allowed the
zero of our tap number counting to be adjustable by ¢,
taps, with #, assumed positive [see Fig. 4(b)]. However,
as in the case of the double exponential fits shown in Fig.
4(a), systematic deviations from the ensemble-averaged
data remain, and the equally large number of fitting pa-
rameters renders the agreement inconclusive as well.

An alternate model for granular relaxation by Hong
et al. [19] is based on a diffusing void picture. It predicts
a power law dependence of the column height reduction,
Ah, with time: Ah «<t? where the exponent z =1 was ob-
tained from numerical simulations. Because in our exper-
iments Ah is small relative to the overall column height,
we find that plots of Ak (¢) have the same general shape
as those corresponding to 1/Ap(t), where Ap(t)
=p(t)—p, is the change in packing fraction. The inset of
Fig. 1(b) can therefore serve as an illustration of our mea-
surements of Ah(t): we observe a rapid initial change in
height followed by increasingly slower packing. A single
power law is not a good fit to our data.
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FIG. 4. Least squares fits of our data for several representa-
tive values of acceleration, T, to (a) Eq. (1) by Barker and Mehta
[17] and (b) to the stretched exponential form, Eq. (2), explained
in the text.
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FIG. 5. The parameters B (O) and 7 (X), obtained from a fit
of Eq. (3) to the density measured by capacitor 2 [see Fig. 1(c)],
are plotted vs I'. The inset shows the parameters p, (CJ) and
Ap,, (+) from the same fits, also plotted against I'. At the
higher values of ', p, is larger than the random close packing
limit (=~0.64). This is not unphysical, however, as ordered close
packing can occur along the container walls.

Finally, we note that a very reasonable four-parameter
fit to the whole range of data is obtained with the heuris-
tic expression

Apo,

1+BIn |1+
.

where the parameters p £ Ap,, B, and 7 are constants
that depend only on the acceleration I'. This form is
motivated by the observation of large time intervals of
logarithmically slow relaxation in Figs. 1 and 2, followed
by a crossover to a steady state at the longest times. The
solid lines through the data in Figs. 1(b) and 1(c) are fits

to Eq. (3). Figure 5 and its inset show the I" dependence
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FIG. 6. The increase in packing fraction Ap from capacitor 4
(near the bottom of the tube) for 0.5 mm glass beads as a func-
tion of the logarithm of the tap number ¢ (offset by 1), for
I'=1.4 (X), 2.3 (A), and 3.5 (0). Each curve represents a single
run. The inset shows Ap for the same beads obtained from
capacitor 2 (O), capacitor 3 (OJ), and capacitor 4 (A) at '=1.8.
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of B, 7, py, and Ap , for the fits of Eq. (3) to the capacitor
2 density data. Qualitatively similar curves are found for
the data from capacitor 4. In all cases, these parameters
vary monotonically with T', and the fits are generally
better than those obtained with either Eq. (1) or (2),
which each have an additional adjustable parameter.
Logarithmic relaxation has also previously been observed
in the decay of the slope of a vibrated sandpile [20].

The focus on this paper has been on the density relaxa-
tion of 2 mm glass spheres in a 1.88 cm diameter Pyrex
tube, but we have performed relaxation experiments with
varying sizes of glass beads and aluminum oxide particles
(with a rough, irregular shape) in tubes of different diam-
eters. We find the same qualitative behavior in all these
systems. As an example, we show in Fig. 6 the change in
packing fraction Ap(?) as a function of tap number ¢ for
0.5 mm glass beads near the bottom (capacitor 4) of the
same 1.88 cm diam Pyrex tube used for the 2 mm beads.
[We have potted Ap(t) because these curves are individu-
al runs and not averages as in Figs. 1 and 2, and thus
there is some indeterminancy in the absolute value of the
initial packing fraction.] The same general curve shapes
are observed for the smaller particles as were seen in Fig.
1(b) for the larger ones, indicating that the finite size of
the system is not dominating our results. The inset of
Fig. 6 is a plot of Ap as a function of tap number ¢ for
capacitors 2, 3, and 4 at '=1.8. The inhomogeneous
packing is analogous to that observed in Fig. 2(a) for the
2 mm beads.

In conclusion, we have observed that density relaxation
in even the simplest of granular materials, a mono-
disperse bead pack, is highly complex. The change in
packing fraction Ap(z =10000) increases sharply and
levels off as the shaking intensity, parametrized by the
peak acceleration of the vibration, is increased through a
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characteristic value I', = 1.8 (Fig. 3). The density of a vi-
brated bead pack does not decay as a single exponential
curve to a steady state value [Figs. 1(b) and 1(c)]; instead,
two or more time scales may be involved. The functional
form that we found which gives the most satisfactory fit
to our data was not theoretically motivated. We also
found that the packing is not homogeneous at low ac-
celerations. Instead, the packing fraction decreases as
depth increases [Figs. 2(a) and 2(b)]. We interpret this as
a gradient in the effective shaking intensity. Above I',,
packing appears to be homogeneous. It is interesting to
speculate how the shaking intensity can be related to an
effective temperature and to investigate whether the
different final steady states that can be observed in such
shaking experiments as ours can be related to the concept
of compactivity [6,21]. This would provide an analogy
with the normal thermodynamics used for systems that
have a well defined temperature that determines their
static properties. Some of these questions will be ad-
dressed in a later publication dealing with the fluctua-
tions of the density around its steady value [7].
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